Engineering Minute

Engineering Minute – Hot Glue Gun For Wound Adhesion

Researchers at the Technion-Israel Institute of Technology have developed a biocompatible glue and hot glue gun that can act as a tissue adhesive in place of pins or stitches. The glue is specially designed to be nontoxic and flexible. Once the tissue heals the glue decomposes within the body in just a few weeks. The results of their work were recently published in the journal Advanced Functional Materials

 

Hot-glue guns can be used for more than putting together cardboard furniture, home decorations, and toys. In fact, researchers at the Technion–Israel Institute of Technology have developed a hot-glue gun to adhere human tissues that have been seriously injured.
Hot-glue guns can be used for more than putting together cardboard furniture, home decorations, and toys. In fact, researchers at the Technion–Israel Institute of Technology have developed a hot-glue gun to adhere human tissues that have been seriously injured. Credit: Israel Institute of Technology.

From the Technion-Israel Institute of Technology article: "Melting the glue and smearing it on the damaged tissue is performed with a hot-glue gun. Unlike the glue guns with which we are familiar, this gun warms the glue to a moderate temperature – just above that of the body – so as not to cause a burn. After the glue is applied, it quickly hardens and decomposes within a few weeks. The adhesive is also suitable for the adhesion of tissue inside the body, and it is four times as strong as existing adhesives used for this purpose. Tested on cells and laboratory animals, it was effective and nontoxic.

The new approach is based on a biocompatible, low-melting-point, four‐armed N‐hydroxy succinimide‐modified polycaprolactone (star‐PCL‐NHS). Star‐PCL‐NHS is inserted into a hot-melt glue gun and melts upon minimal pressure, the team wrote. It is squeezed directly onto the wound, where it solidifies, bonding strongly with both edges of the wound. Changes in molecular weight allow control of adhesive strength, melting point, and elasticity properties. In-vitro and in-vivo evaluations confirm the biocompatibility of this system. The straightforward synthetic scheme and the simple delivery method – combined with the desirable mechanical properties, tenability and tissue compatibility – are desirable traits in wound management.

The researchers believe the new concept will lead to the development of devices that will reduce the use of stitches, staples and pins, speed up the healing process and reduce scarring."

 

Read more about the hot glue gun that adheres human wound tissue at the Technion-Israel Institute of Technology